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Abstract

Randomized experiments with high-dimensional outcomes, such as product-level
purchases, biomarker panels, or digital behavioral traces, typically yield aggregate
treatment effects but provide limited insights into the underlying pathways through
which interventions operate. We propose a Bayesian framework for decomposing
treatment effects across latent behavioral dimensions inferred exclusively from pre-
treatment data. The approach combines a causal identification strategy with a mixed-
membership factor model implemented through Latent Dirichlet Allocation, yielding
additive factor-level outcomes that accommodate sparsity, overlapping item—factor
relationships, and uncertainty in latent assignments. We derive a causal decomposition
that represents factor-level treatment effects as probability-weighted averages of
item-level effects, along with an adjustment term capturing the alignment between
latent structure and heterogeneous responses. A joint posterior computation scheme
integrates latent factor estimation with treatment-effect inference and propagates
uncertainty to all causal estimands. Simulation studies demonstrate that the method
reliably recovers both latent factor structure and treatment-effect decompositions
under realistic sparsity. In an application to a large-scale randomized promotion
experiment at a retailer, the framework identifies interpretable latent behavioral
factors, isolates the components through which the promotion operates, and reveals
heterogeneity obscured by category-based analyses. The proposed method provides a
scalable and causally principled approach for analyzing high-dimensional experimental
outcomes.
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1 Introduction

Modern experiments in biostatistics, economics, marketing, and the social sciences increas-
ingly generate high-dimensional outcome spaces. Consumers purchase from assortments
containing thousands of products; patients present panels of biomarkers spanning multiple
physiological systems; and digital platforms capture detailed behavioral traces at fine res-
olution. Although the average treatment effect associated with an intervention provides
a stable and policy-relevant summary, it offers limited insight into how the intervention
operates across the underlying behavioral, biological, or functional dimensions that shape
the observed outcome. Such insights are often critical for intervention design and targeting
(e.g., Imbens & Rubin 2015, Bauer et al. 2021, Zhang & Tchetgen Tchetgen 2021).

An important consideration in evaluating treatment-effect heterogeneity, and its relevance
for downstream decisions such as policy design, is the choice of the dimensions along which
heterogeneity is characterized. While observable features such as individual demographics
are a natural starting point, relying exclusively on observables can be limiting (e.g., Rossi
et al. 1996). Administrative taxonomies, such as product categories and ICD codes, often
reflect managerial or historical conventions and may not align with underlying response
patterns. Consequently, analyses can benefit from incorporating both observable and
latent sources of heterogeneity. Conversely, avoiding any aggregation can yield unstable
estimates due to data sparsity. As a result, the informational value of high-dimensional
randomized experiments can be substantially increased by statistical methods that recover
latent dimensions relevant for heterogeneity while preserving causal validity, and propagate
uncertainty in the inferred latent structure through to final causal estimates.

Developing methods that leverage latent structure for causal inference introduces a distinct
set of methodological challenges. High-dimensional outcome vectors are typically sparse,
destabilizing item-level causal estimates and complicating posterior computation. Treat-
ment effects may vary not only with observed covariates but also with latent aspects of
pre-treatment behavior, motivating decompositions that capture cross-item heterogeneity.
Because the latent structure is unobserved and must be inferred, uncertainty in factor
assignments should propagate into causal estimates. Finally, estimating latent structure
using post-treatment outcomes risks contaminating the factor definitions themselves, thereby
compromising causal interpretability—a well-known challenge in high-dimensional Bayesian
factor and count-data models (e.g., Blei et al. 2003, Griffiths & Steyvers 2004, Zhu et al.
2023). In causal applications, these difficulties arise in service of identification rather than
prediction, making them particularly acute.

Existing empirical strategies address only limited subsets of this problem. Estimating
treatment effects separately at the item level is conceptually straightforward but empirically
unstable in sparse, high-dimensional environments. Aggregation using pre-defined cate-
gories mitigates sparsity but may impose partitions misaligned with meaningful behavioral
constructs. Conversely, analyses based solely on aggregate outcomes enhance robustness but
obscure the mechanisms through which effects operate. Machine-learning approaches for
heterogeneous treatment effects capture variation along observed covariates but ignore latent
dimensions (e.g., Athey & Imbens 2016, Wager & Athey 2018, Knaus 2021) . Unsupervised
learning tools such as clustering or topic models can uncover latent structure but are
optimized for prediction or exploration and do not guarantee causal interpretability when



the structure is estimated using post-treatment data.

In this article, we develop a Bayesian framework for decomposing treatment effects into
latent behavioral components and observed covariates in high-dimensional outcome settings.
The key idea is to estimate the latent factor structure exclusively from pre-treatment data,
ensuring independence from treatment assignment and preserving causal interpretability. We
employ a mixed-membership latent factor model—implemented via Latent Dirichlet Alloca-
tion (Blei et al. 2003)—to flexibly represent sparse and overlapping item—factor relationships.
These relationships define additive factor-level outcomes that avoid double-counting while
allowing items to load probabilistically onto multiple latent components. A joint Bayesian
procedure integrates latent-structure learning with treatment-effect estimation, enabling full
propagation of uncertainty from factor inference to causal inference. Computationally, col-
lapsed Gibbs sampling and modular regression updates deliver scalability in high-dimensional
outcome spaces (e.g., Griffiths & Steyvers 2004, Zhu et al. 2023).

Our contributions are threefold. First, we provide a causal identification result demonstrating
that factor-level effects remain valid under randomized assignment when factor memberships
are inferred solely from pre-treatment outcomes, paralleling identification strategies for
pathway-specific and component-specific causal effects (e.g., Bauer et al. 2021). Second, we
derive an analytical decomposition expressing factor-level effects as weighted averages of
item-level effects plus an adjustment that captures the alignment between latent structure
and heterogeneous responses. Third, we develop a posterior computation strategy that unifies
mixed-membership estimation with causal inference, and show through simulations that the
proposed method reliably recovers both the latent factor structure and the treatment-effect
decomposition under realistic sparsity conditions.

To illustrate the value of the proposed framework, we analyze purchase data from a
randomized promotion experiment conducted at a large personal-care retailer involving
close to 2,000 items. The data exhibit substantial sparsity and high dimensionality, making
them particularly well suited to our approach. Our method uncovers interpretable latent
behavioral factors, identifies the components through which the promotion operates, and
reveals heterogeneity that conventional category-based analyses fail to capture. Only a
subset of latent factors exhibits meaningfully positive effects, and these correspond closely
to distinct skincare needs identified by domain experts. The resulting decomposition offers a
richer and more actionable understanding of how the intervention affects consumer behavior.

The remainder of the article is organized as follows. Section 2 presents the causal framework
for factor-level decomposition and describes the Bayesian latent factor model and associated
inference procedure. Section 3 evaluates finite-sample performance across a range of
simulation settings. Section 4 applies the approach to the randomized field experiment.
Finally, Section 5 provides a brief discussion and conclusion.

2 Model and Inference

We consider an experiment with / units (e.g., consumers) indexed by i = 1,..., I, each
measured on up to J items indexed by j =1,...,J (e.g., spending on individual products).
Units are randomly assigned to treatment (W; = 1) or control (W; = 0) in a one-shot



randomized controlled trial. Let Y;; denote the post-treatment outcome of unit 7 on item j.
The unit-level aggregate outcome is Y; = 23.7:1 Y;;. Our goal is to decompose the average
treatment effect (ATE) on Y; into contributions operating through a small number of latent
behavioral factors that summarize the high-dimensional vector of unit-item responses. We
frame this analysis within the potential-outcomes framework for causal inference (e.g., Rubin
2005, Angrist & Pischke 2008, Imbens & Rubin 2015).

Under SUTVA and consistency, randomized treatment assignment implies W; L
{V;;(1),Y;;(0) : j =1,...,J} (e.g., Rubin 2005, Imbens & Rubin 2015). Consequently, W;
is also independent of any measurable function of these potential outcomes, including the
aggregate outcomes constructed from {Y;;(w)}. This observation underlies all decomposition
results that follow.

2.1 Decomposition with Observed Factors

We first consider a benchmark case in which item—factor memberships are known and
deterministically fixed. Suppose unit ¢ associates item j with a known factor k, represented
by a discrete assignment variable z;; € {1,..., K} defined prior to treatment. Define
factor-level outcomes

J
j=1

By construction, Y; = Zszl Yik. Let Yig(w) denote the corresponding factor-level potential
outcomes under treatment w € {0, 1}. All expectations below are taken over units.

Proposition 1 (Observed-Factor Decomposition). If treatment is randomized such that
W; L {Y;;(1),Y:;(0)}, then the aggregate ATE T decomposes additively across the factor-level
ATEs 7p: 7 = E[Y;(1) = Y;(0)] = K E[Yi(1) — Yie(0)] = SE 7. Moreover, the
difference-in-means estimator 7, = E[Yy | W; = 1] — E[Y, | W; = 0] is unbiased for Ty,
and # = Y& % is unbiased for T.

Proof. Because Y;(w) = Y&, Yi(w), linearity of expectation yields the decomposition.
Randomized treatment assignment W; L {Y;;(1),Y;;(0)}, and since each Yz (w) is a mea-
surable function of the item-level potential outcomes, it follows that W; L {Y;x(1), Y;x(0)}.
Therefore, the difference-in-means estimators are unbiased. O]

This result provides the structural benchmark: when item—factor memberships are observed,
the aggregate ATE decomposes exactly into the factor-level ATEs.

2.2 Latent Factors and Causal Identification

In most empirical settings, the factor assignments z;; are latent and must be inferred rather
than observed. Define the latent factor-level potential outcomes analogously:

J
Yip(w) = Z:H{Zij =k} Yi;(w). (2)



Let DY denote pre-treatment data used to estimate posterior membership probabilities,
and suppose the factor model yields z;; ~ P(z; | D). For these factor-level outcomes
to retain causal interpretability, the information used to infer latent memberships must
be independent of treatment assignment. Because DY is measured prior to treatment,
randomization ensures W; L D™ (e.g., Stuart 2010, Imbens & Rubin 2015).

Proposition 2 (Identification with Probabilistic Assignments from Pre-Treatment Data).
If treatment is randomized such that W; L {Y;;(1),Y;;(0), DY}, and latent assignments
are drawn from P(z; | D), then W; L z1.; and W; L {Y;,(1),Y(0)}. Consequently,
7 = E[Yi | Wi = 1] = E[Yi | Wi = 0] is unbiased for .

Proof. By construction, z;; depends only on DI, which is independent of W; under
randomization, implying W; L z;1.;. The factor-level potential outcomes are measurable
functions of {Y;;(w), z;; }, both independent of W;, so W; L {Y;;(1),Yit(0)}. Unbiasedness
of the difference-in-means estimator then follows. n

Randomized treatment assignment thus guarantees identification of factor-level causal
effects even when factor memberships are latent and probabilistically inferred. Importantly,
although not strictly necessary, it is sufficient for causal interpretability that latent factor
allocations be inferred exclusively from pre-treatment data.

2.3 Relation Between Item- and Factor-Level Treatment Effects

Having established identification of factor-level causal effects under both observed and latent
factor memberships, we now clarify how these effects relate to the underlying unit- and
item-level treatment effects 7;; = Y;;(1) — Y;;(0) and their averages across units, 7; = E[7;;].
Recall that factor-level potential outcomes are defined by Y (w) = ¥7_ {z;; = k} Vij(w),
so that Y;(w) = Yi, Yir(w) for w € {0, 1}.

Proposition 3 (Factor-Level Effects as Probability-Weighted Aggregates Plus Covariance
Adjustments). Under randomized treatment assignment and factor memberships represented
by latent indicators z;;, 1, = E[Yi(1) — Y (0)] = Zle Wik T; + Z}']:1 cov(H{zij =k}, Ti]’),

where wji, = E{]I{zij = k;}} is the marginal probability that item j belongs to factor k.

Proof. By definition, 7, = E[ijl I{z; = k}Tij} = > E[I{z;; = k}7;;]. The covariance

identity gives E[I{z;; = k} 7] = wjx 75 + cov (]I{zij =k}, Tij>, and summing over j yields
the result. O

This proposition shows that a factor-level effect is not merely a simple aggregation of
item-level treatment effects. The first term, Z‘]le wj Tj, is the probability-weighted average
of item-level ATEs, where the weights reflect how likely each item belongs to factor k. The
second term, Z}-jzl cov(]l{zz»j = k}, Tij>, captures how factor memberships and unit—-item
treatment effects co-vary across units and items.

Corollary 1 (Pure Averaging Case). If cov(]I{z,-j =k}, Tij) =0 forall j, 7, = Z}]:1 Wik T



Two familiar special cases follow. First, when factor memberships do not vary across units
(zi; = z; for all i), the covariance term vanishes, and the factor-level effects reduce to a
probability-weighted average of the item-level effects. Second, when item-level treatment
effects do not vary across units (7;; = 7;), the covariance is zero, and 7 collapses to a
probability-weighted sum of {7;}.

Corollary 2 (Heterogeneity-Based Adjustments Cancel in Aggregate Effects). Because the
latent indicators exhaust all factors, Y0 1{z;; = k} = 1 for every (i,7). Thus, T = S0, 71,
and an analogous aggregation holds at the item level: T = 23-7:1 7j. In particular, although
the covariance adjustments in Proposition 3 may be nonzero for individual factors, they
cancel in aggregate and do not affect T.

These results highlight how factor-level causal effects relate to the underlying item-level
effects. Factor-level effects remain causally identified under randomized assignment and
pre-treatment factor inference, but their interpretation depends on how the factor model
groups items and how those groupings align with heterogeneous treatment responses, much
as in pathway- or component-specific decompositions of causal effects (e.g., Bauer et al.
2021, Zhang & Tchetgen Tchetgen 2021). An illustrative example demonstrating the
decomposition is provided in Supplementary Material S1.

2.4 Latent Factor Model

To operationalize the decomposition results above, we employ a probabilistic model that
infers latent factors from observed data in a manner consistent with the identification
conditions in Proposition 2.

Although the causal decomposition is valid for any factor model whose assignments depend
exclusively on pre-treatment information, not all models are equally suitable for empirical
implementation. A practical model must satisfy several requirements. First, it should
yield interpretable behavioral factors that generate meaningful insights. Second, it should
infer factor memberships directly from data rather than impose restrictive or ad hoc
groupings. Third, it should produce posterior item—factor probabilities that map cleanly
into the assignments z;; used in the causal decomposition. Finally, it should support flexible
probabilistic memberships, allowing items to load on multiple factors rather than forcing
mutually exclusive categories.

We adopt the Latent Dirichlet Allocation (LDA) model (Blei et al. 2003), which meets
these requirements and has been widely used for high-dimensional count data in both
methodological and applied work (e.g., Griffiths & Steyvers 2004, Wallach et al. 2009,
Tirunillai & Tellis 2014, Zhong & Schweidel 2020). LDA treats each unit-item instance or
interaction (e.g., purchase or review) as an expression of an underlying behavioral factor
(e.g., topic, motive, or theme), learning both which factors drive each unit’s behavior and
how strongly each item associates with each factor. The model provides a transparent
probabilistic structure and supports uncertainty quantification through posterior sampling
methods such as Gibbs sampling (e.g., Griffiths & Steyvers 2004). LDA assumes a fixed
number of latent factors that are common across units and stable across treatment conditions.
It also employs a bag-of-items representation that treats item order as irrelevant—an
exchangeability assumption applied within and across units.



Each latent factor k is associated with a J-dimensional factor-item distribution ¢y, where
¢r; measures the strength of association between factor k and item j. Each unit ¢ is
characterized by a K-dimensional factor-membership distribution 6;, where 6;;, captures
the prevalence of factor k for that unit. For each observed instance n of unit ¢ with item
Vin, the generative process is

{ P =Fk|0;) =0,
P(Um :j | d)"hn) - ¢ninj7

where 7);,, is the latent factor assigned to instance n and vy, is the observed item. Given
this structure, the posterior probability that item j for unit ¢ belongs to factor k is

P(zij =k | 0;,¢) = P(Niny = k | Vin, = 7, 0;, dr) X Oitb;- (3)

A key advantage of this probabilistic formulation is that it explicitly maintains uncertainty
in how items relate to latent factors. When items reflect multiple behavioral processes,
probabilistic rather than deterministic assignments avoid overstating the precision of factor
memberships and ensure that uncertainty is coherently propagated to the factor-level
treatment effect estimates 7;,. Although 7,, (instance-level assignments) and z;; (unit-item
factor labels) are distinct latent variables, the conditional independence structure of LDA
implies that they share the same posterior form in (3), yielding a coherent measure of
item-factor association. Finally, because all parameters (6;, ¢ )—and therefore all posterior
memberships P(z;; = k | 0;, ¢y)—are estimated exclusively from pre-treatment data
D™ the resulting factor assignments remain independent of treatment under randomized
assignment. Hence, the causal interpretation of the factor-level decomposition is preserved,
and LDA-based factor-level estimates remain unbiased and scientifically interpretable under
the experimental design.

2.5 Estimation

We now turn to estimation of the treatment effects defined above. At the aggregate level, a
common starting point is
)/i:O[—FTWi—Fg“ (4)

where Y; is the aggregate outcome for unit i, W; is the treatment indicator, and 7 is the ATE.
Under randomized assignment, the difference-in-means estimator or the OLS estimator in
(4) consistently estimates 7 (e.g., Angrist & Pischke 2008, Imbens & Rubin 2015).

2.5.1 Factor-Level Treatment Effects

When factor memberships are observed or inferred from pre-treatment data, factor-level
outcomes Y can be regressed analogously:

Yir = o + 7. Wi + €, (5)

where 7, is the factor-specific ATE. Because aggregate outcomes satisfy Y; = S5 | Vi,
Proposition 1 implies that the aggregate effect decomposes as 7 = & | 7;,. This identity
is also clear from the regression structure. Summing (5) over k gives Y; = Zle o +

7



(Zﬁil Tk) Wi + Zle g;x. Letting & = Zszl o, T = Zle s, and &, = Zszl g yields
Y, =a+7W;+¢&;, soT = 7 in the population. The decomposition 7 = Zszl 7 holds for any
sample size. Under standard regularity conditions, estimation satisfies this linear constraint,
ensuring coherent inference across both aggregate and factor levels.

2.5.2 Heterogeneity in Treatment Effects

The framework also accommodates heterogeneity in treatment effects arising from both
observed and latent pre-treatment characteristics. Let x; denote a vector of M observed
pre-treatment covariates for unit ¢ and d; a vector of S latent features inferred exclusively
from pre-treatment data. These features may include summaries of pre-treatment outcomes
across factors or other transformations that capture underlying behavioral variation.

To be concrete, we set S = K in our setting and construct d; as a K-dimensional vector of
total pre-treatment outcomes for each factor k, with entries

J
di, = Z ]Ik(zij) Yi?m, (6)
j=1

where ;5" is the pre-treatment outcome for unit ¢ on item j. This mirrors the factor-level
decomposition used for post-treatment outcomes and provides interpretable, factor-specific
summaries of pre-treatment behavior.

Let &; = (=x;, d;) denote the combined feature vector. We model the heterogeneous treatment
effect (HTE) for unit ¢ as

M S
hT ~ h h h o~
T =T (1,:131-) =17 + Z T Lim + ZTMH:L“LMH,
m=1 s=1

where 7' is the baseline treatment effect. Substituting 7; into the potential-outcome

representation yields
Y = o + W+l (7)

where the heterogeneous baseline level is a; = o' (1,&;) and & ~ N(0,0%). The
coefficients 7" characterize how treatment effects vary with both observed and latent pre-
treatment features, consistent with parametric HTE specifications commonly used in applied
work (e.g., Angrist & Pischke 2008, Knaus 2021).

Factor-level heterogeneous effects are defined analogously:

M S
hT (1 4 h ho h ~
T =T, (1, &) =79, + Z Tk Tim + ZTMJFS,,{I@MJFS,
m=1 s=1
with corresponding factor-level outcomes
Yie = i + Wi + € (8)
ik = Qg TikVVi Eik-

Because Y; = Zszl Y. and 1; = Zszl T:k, the heterogeneous treatment effects satisfy the



additive decomposition 7" = 3K | 7/ Table 1 summarizes the aggregate and factor-level
treatment-effect representations.

Table 1: Treatment Effects at Aggregate and Factor Levels

Outcomes Average Treatment Effects Heterogeneous Treatment Effects

Aggregate Y; 7 (Eq. 4) T (Eq. 7)
Factor-level Yik 7 (Eq. 5) T} (Eq. 8)

2.6 Inference

We estimate latent factors using pre-treatment data, preserving the causal interpretation of
factor-level ATEs (Proposition 2). Treatment effects at both the aggregate and factor levels
are then estimated while fully propagating uncertainty from the factor model.

Our inference procedure accounts for three sources of uncertainty that are essential for
valid factor-level inference: unit—factor prevalences 6;, factor—item distributions ¢y, and
item-tofactor allocations z;;. Rather than conditioning on point assignments, we integrate
over their posterior distributions so that uncertainty in factor learning coherently propagates
to 7, {7}, and heterogeneous effects.

2.6.1 Algorithm
We adopt LDA with symmetric Dirichlet priors and employ a collapsed Gibbs sampler for

instance-level assignments, using only pre-treatment data to estimate (6;, ).

1. Pre-treatment factor learning. Specify symmetric Dirichlet priors
0; ~ Dirichlet((, ..., (), ¢ ~ Dirichlet(5, ..., 5).

Update instance-level assignments 7, via the standard collapsed Gibbs step (e.g.,
Griffiths & Steyvers 2004). Then draw

0; | n® ~ Dirichlet(¢ + nY), ¢y | nl ~ Dirichlet(5 + nl), (9)

where n}' and n£ denote the unit-level and factor-level item counts by the collapsed
sampler.

2. Item—factor association. For each unit-item pair (4, j), sample z;; from P(z;; =
k|6;,¢r) < i pr;. Construct factor-level outcomes as Yy, = Z}-le I{z; = k}Y};.

3. Heterogeneity features. Construct latent pre-treatment features d; by aggregating
the pre-treatment outcomes to latent factors: dj = Z}Ll [{z; = k}YJ™. These
features enter the heterogeneous-effects model.

4. Causal estimation. Within each MCMC iteration, estimate the aggregate and
factor-level outcome regressions using Y;, Y, and heterogeneity features. Sampling
regression parameters at every iteration propagates uncertainty in (6;, ¢y, z;;) directly
into posterior draws for 7, {7x}, and heterogeneous effects.

9



Full conditionals, priors, and diagnostics are provided in Supplementary Material S2.

3 Simulations

We conduct a series of Monte Carlo simulations to evaluate the performance of the proposed
framework in recovering latent factor structures and estimating treatment effects. The
simulations address three questions: whether the method yields valid causal estimates under
both null and non-null treatment effects; whether it accurately recovers heterogeneous
treatment effects across latent factors; and whether it scales reliably to large item spaces
comparable to our empirical application.

3.1 Simulation 1: Recovery of Average Treatment Effects

We begin with a controlled setting that allows transparent comparison between true and
estimated factor structures. We simulate I = 100 units, J = 10 items, and K = 3 latent
factors. Unit—factor prevalence are drawn from a symmetric Dirichlet distribution with
¢ = 0.1, and factor—item distributions are drawn from a symmetric Dirichlet distribution
with 8 = 0.1, following standard mixed-membership and topic-modeling formulations
(e.g., Blei et al. 2003, Griffiths & Steyvers 2004). For each unit, we generate ten unit-item
instances as pre-treatment data. We randomly assign half of the units to treatment condition
(W; = 1) and the remainder to control (W; = 0). Post-treatment item-level outcomes are
then generated for each unit.

To assess whether the method artifacts treatment effects, we simulate both null and non-null
treatment effect settings. For each unit—item pair (i, j) we generate outcomes according
to Yy, = ;Wi + e, €5 ~ N(0,1), independently across all 7 and j. In the null case,
7; = 0 for all j. In the non-null case, item-level treatment effects are drawn independently
as 7; ~ N(0.5,0.25), j=1,...,J.

Given unit-factor weights ¢;; and factor-item loadings ¢;, the item—factor assignment
weight is proportional to 0, ¢;. Because the item-level effects 7; are constant across units by
construction in this simulation, the latent factor treatment effect 7 is a probability-weighted
mixture of the underlying item-level effects, as characterized in Proposition 3. In particular,
if 7; = 0 for all items, then all factor-level treatment effects are necessarily zero. Estimation
follows the inference procedure described in Section 2.6. We run a Gibbs sampler for
2,000 iterations, discarding the first 1,000 as burn-in and retaining the remaining draws for
posterior inference (e.g., Griffiths & Steyvers 2004, Heinrich 2005).

To assess recovery of the latent structure, we compare the true factor—item probability
matrix ® = (¢, o, P3) " with its posterior mean estimate:

$ = [0.07 0.01 0.01 0.00 0.73 0.18 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.40 0.02 0.40 0.01 0.00 0.00 0.17
0.24 0.00 0.04 0.00 0.58 0.05 0.03 0.00 0.06 0.00

and

)
Il

0.03 0.00 0.01 0.00 0.73 0.22 0.00 0.00 0.00 0.02

0.00 0.00 0.00 0.42 0.02 0.38 0.00 0.00 0.00 0.19
0.23 0.00 0.04 0.00 0.58 0.05 0.05 0.00 0.06 0.00

10
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Figure 1: Posterior Estimates of Factor-Level Treatment Effects Under Null and Non-Null
Item-Level Effects

The estimated factor-item distributions exhibit excellent recovery, with posterior means
closely aligned with the true probabilities. Figure 1 reports posterior means and 95%
credible intervals for factor-level treatment effects 75, in both the null and non-null settings.
In the null case (Figure 1a), the posterior means remain tightly centered around zero after
burn-in, and all 95% credible intervals include zero for every k, indicating that the method
remains unbiased and does not produce spurious effects. In the non-null case (Figure 1b), the
posterior means closely match the true factor-level treatment effects, and all 95% credible
intervals cover the corresponding true values.

3.2 Simulation 2: Recovery of Heterogeneous Treatment Effects

Having verified that the model does not generate spurious treatment effects, we next evaluate
the model’s ability to recover heterogeneous treatment effects when such heterogeneity is
present (e.g., Athey & Imbens 2016, Wager & Athey 2018).

We retain the same basic structure as in Simulation 1 (I = 100, J = 10, K =3, = 5 = 0.1),
but introduce heterogeneity through unit-level covariates. For each unit ¢, we draw M = 4
pre-treatment covariates z;, ~ N(0,1), m = 1,..., M, and collect them in the vector
x; = (i1, ...,x;0). The heterogeneous item-level treatment effect for unit ¢ and item j is
specified as 7;; = TJhT(l, x;) = TéLj +3M TJ,LLJ- Zim, Where the heterogeneous loading vectors
are drawn independently as Tjh ~N(0,I), j=1,...,J. Post-treatment outcomes are then
generated as Yi; = 7,; Wi + €55, €, ~ N (0, 1).

We estimate the model using the same inference procedure and MCMC settings as in
Simulation 1. Figure 2 summarizes posterior estimates for heterogeneous effects at the
factor level. The recovered heterogeneous coefficients closely match the true data-generating
loadings, and credible intervals concentrate around the true values, indicating that the
framework successfully captures covariate-driven heterogeneity across latent factors.
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Figure 2: Posterior Estimates of Heterogeneous Factor-Level Treatment Effects

3.3 Simulation 3: Scalability to Large Item Spaces

Finally, we assess scalability in a setting aligned with our empirical application and with
high-dimensional factor and count-data models more broadly (e.g., Mimno et al. 2012, Zhu
et al. 2023). We simulate I = 2,000 units and J = 1,000 items, with each unit generating
30 pre-treatment observations. Latent factors are generated analogously to Simulation 1
using the same Dirichlet hyperparameters, with K = 10 factors. Item-level treatment effects
are drawn independently as 7; ~ N(0,0.5), j = 1,...,J, and post-treatment outcomes are
generated as Y;; = 7; W; + ;5.

We estimate the model using the same LDA-based factor learning and regression procedure
described in Section 2.6. Figure 3 reports posterior means and 95% credible intervals
for the factor-level treatment effects 7. The posterior summaries closely track the true
factor-level effects and remain tightly concentrated, indicating that the method maintains
accurate recovery and numerical stability even with large item assortments. Overall, these
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Figure 3: Posterior Estimates of Factor-level Treatment Effects in a High-Dimensional
Setting (J = 1,000)

simulations demonstrate that the proposed framework accurately recovers latent factor
compositions, preserves unbiasedness when treatment effects are null, correctly identifies
and quantifies nonzero and heterogeneous effects, and scales effectively to high-dimensional
outcome spaces.
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4 Empirical Analysis

4.1 Experimental Data

We evaluate the proposed Bayesian decomposition of treatment effects using data from
a large-scale randomized field experiment on coupon promotions originally reported in
Gopalakrishnan & Park (2021). The experiment was conducted by a leading Asian personal-
care retailer interested in understanding how financial incentives shape consumer purchase
behavior, in line with a broader literature on field experiments in marketing (e.g., Li et al.
2015, Goldfarb et al. 2022). Consumers were randomly assigned to receive either a standard
coupon ($7 off a $20 purchase), a premium coupon ($10 off a $20 purchase), or no coupon
(control). Consistent with our identification results and simulation setup, we focus on
the comparison between the premium-coupon and control conditions, which yields a clean
experimental contrast for evaluating the inferential and interpretive value of the proposed
latent-factor framework.

This empirical setting aligns well with our methodological goals. Random assignment
ensures internal validity for causal effect estimation (e.g., Imbens & Rubin 2015), while the
retailer’s full assortment spans more than 10,000 distinct SKUs, generating an exceptionally
high-dimensional and sparse item space with rich cross-product correlation patterns. The
firm organizes its full assortment into five broad product categories (i.e., skincare, makeup,
hair care, bath and body care, and a miscellaneous “other” category), which serve as
benchmark structures for standard category-level analyses. Our objective is not to re-
evaluate the managerial effectiveness of the coupon campaign, but rather to test whether
latent behavioral factors inferred from pre-treatment data provide a coherent decomposition
of aggregate treatment effects and sharper interpretive insight relative to these category-
based benchmarks.

The analytic sample includes 4,247 consumers, of whom 3,446 were assigned to treatment
and 801 to control. Within this sample, consumers purchase roughly 2,000 distinct SKUs,
which define the item universe for our empirical analysis. For each consumer, we observe
detailed transaction histories over a 12-month pre-treatment period and during the one-week
campaign window, including product identifiers, timestamps, product attributes, and basic
demographics. Randomization checks reported in Gopalakrishnan & Park (2021) confirm
baseline balance across observed covariates; we build on those results by providing additional
latent-balance diagnostics below. Our primary outcome is total spending (USD) during the
campaign period.

4.2 Latent Factor Calibration

We estimate latent behavioral factors using an LDA model applied exclusively to pre-
treatment transactions, ensuring that factor definitions remain strictly exogenous to treat-
ment assignment and preserving the causal interpretation of factor-level treatment effects.
To select the number of latent factors, we fit models with K € {5,10,...,30} and evaluate
predictive accuracy using perplexity, a standard out-of-sample probabilistic metric for topic
models (e.g., Blei et al. 2003, Heinrich 2005). For each specification, perplexity is computed
on a 10% holdout sample obtained by partitioning pre-treatment data into 90% training
and 10% validation sets; lower values indicate better predictive fit.
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Figure 4: Holdout Perplexity and Marginal Improvements by Number of Factors

Figure 4 reports both the holdout perplexity and the marginal improvement relative to
adjacent values of K. Perplexity declines monotonically with K, as expected, but marginal
gains flatten considerably after K = 10. Balancing this empirical bias—variance trade-off
with the need for interpretability, we select K = 10 for all subsequent analyses. The final
model is estimated using 2,000 MCMC iterations. Visual inspection of the sampling chains
indicates good mixing and satisfactory convergence; additional diagnostics are provided in
Supplementary Material S3.

To assess the relative adequacy of the proposed mixed-membership factorization, we compare
its predictive performance against three benchmarks: a degenerate membership model
imposing z;; = z; for all units; a model based on firm-defined product categories; and
a model that assigns items randomly to five categories. The mixed-membership LDA
consistently outperforms all benchmarks in out-of-sample perplexity, indicating a more
faithful probabilistic representation of unit-item interaction patterns. Additional details are
provided in Supplementary Material S4.

4.3 Interpretation of Latent Factors

The ten inferred latent factors provide a parsimonious yet flexible representation of pre-
treatment purchase behavior, similar in spirit to other applications of topic models and mixed-
membership structures in marketing (e.g., Tirunillai & Tellis 2014, Jacobs et al. 2016, Liu &
Toubia 2018, Jacobs et al. 2021, Kim & Zhang 2023). Each factor captures a distinct—but
not mutually exclusive—pattern of consumer behavior that extends beyond the retailer’s
administrative product taxonomy (e.g., skincare, makeup). Table 2 summarizes the factor
structure using representative product types. Factor labels were selected in consultation with
the retailer and reflect interpretable behavioral dimensions under anonymization constraints.
Several factors resemble familiar product groupings (e.g., hydration-focused regimens,
daily-use essentials, or gifting-oriented assortments), whereas others reveal cross-category
behavioral associations not captured by the firm’s predefined categories.

A key feature of the model is its probabilistic allocation of products to factors, allowing
items to load on multiple behavioral dimensions (e.g., Blei et al. 2003, Airoldi et al. 2006).
Figure 5 displays a t-distributed stochastic neighbor embedding (t-SNE) visualization of
skincare products, colored by the modal factor assignment. The figure reveals coherent
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but overlapping clusters, indicating that the factors capture multi-dimensional behavioral
patterns—such as intensive hydration routines, botanical-oriented preferences, or gifting
bundles—that do not map cleanly to traditional administrative categories. Approximately
52% of products exhibit non-trivial posterior mass on more than one factor (Supplementary
Material S5), underscoring the value of a latent, rather than fixed, grouping structure.

Table 2: Latent Factors and Representative Product Types

Factor Name

Representative Product Types

9

10

Natural Soothing Care
Functional Daily Care
Gentle & Sensitive Skincare
Intensive Hydration
Purifying & Wellness Boost
Makeup & Daily Essentials
Natural Indulgence & Gifting
Oral Hygiene & Scalp Health
Botanical Skincare Rituals

Beauty Accessories & Tools

moisturizing mask, nourishing mask, soothing mask, mask pack, brightening mask,
massage mask, hydrating mask, firming mask, air cushion, toner

essence mask, fit mask, pouch pack, ampoule mask, hand mask, blackhead nose patch,
cleanser, hair treatment, body lotion, soothing gel

hydrogel mask, herb soap, toothbrush, hair treatment, toner, emulsion, vitamin sup-
plement, balancing water, emulsion, shampoo

air cushion, moisturizer, sun protector, skin refiner, foundation, essence, toner, emul-
sion, emulsion, sleeping mask

blackhead patch, health supplement, foundation, energy ampoule, cleansing oil,
cleanser, toner, scrub, slimming supplements, hair serum

cushion puff, toner, lip tint, cleanser, BB cushion, eyeshadow, emulsion, sunscreen,
foundation, cleansing wipes

body mist, cream, facial mask, promotional gift, cleanser, hydrating ampoule, cleans-
ing oil, nail polish, bag & pouch, sun cushion

toothpaste, shampoo, mouthwash, hair treatment, shampoo, shampoo, toothpaste,
shampoo, hair pack, hair treatment

facial mask, toner, cream, cushion, emulsion, essence, sun protector, cleanser, serum,
cleansing oil

cushion puff, cotton pads, nail polish, lip & eye remover, hair mask, eyeshadow,
eyelashes, nail polish, nail color, foundation

Note: Product descriptions are anonymized under data-sharing agreements. Factor labels were validated with the retailer

and selected for expository purposes.
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Figure 5: t-SNE Visualization of Skincare Products by Modal Factor Assignment

As a diagnostic for causal validity, Figure 6 compares pre-treatment factor distributions
between treatment and control groups. Posterior mean factor shares and 95% credible
intervals reveal no meaningful differences across groups for any factor. This confirms
that randomization achieves balance not only on observed covariates, as documented in
Gopalakrishnan & Park (2021), but also on the inferred latent structure, consistent with
standard balance diagnostics in causal inference (e.g., Rosenbaum & Rubin 1983, Austin
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2009). These results support the use of factor-level responses as causally valid components
for treatment-effect decomposition.
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Figure 6: Pre-treatment Latent Factor Distributions by Treatment Group

4.4 Average Treatment Effects

We begin by estimating the aggregate benchmark effect. The posterior mean ATE of the
coupon treatment on total campaign spending is $1.93, with a 95% credible interval of [1.07,
2.80], consistent with the findings in Gopalakrishnan & Park (2021).

We then decompose this effect using the inferred latent behavioral factors. For each factor,
we construct factor-level spending by weighting products according to their posterior proba-
bilities of factor membership and estimate factor-specific ATEs under Bayesian framework
described in Section 2. Results are reported in Table 3. Three factors exhibit credibly
positive effects: Factor 9 (Botanical Skincare Rituals; $0.64), Factor 4 (Intensive Hydration;
$0.41), and Factor 5 (Purifying & Wellness Boost; $0.35), each with 95% credible intervals
that exclude zero. The posterior means of factor-level ATEs sum to $1.94 (95% credible
interval: [1.14, 2.75]), essentially matching the aggregate effect and providing a behaviorally
grounded decomposition of the overall impact.

For comparison, Table 4 reports ATEs aggregated to the retailer’s five administrative
product categories. The skincare category shows the largest increase ($1.52, 95% credible
interval: [0.78, 2.20]), while the remaining categories exhibit no clear effects. Relative
to this coarse partition, the factor-based decomposition offers a sharper and statistically
coherent interpretation. Specifically, the aggregate skincare effect is not homogeneous but
instead concentrated along three behaviorally distinct latent dimensions that differ in both
spending composition and effect magnitude. Thus, the latent-factor representation preserves
the original experimental conclusions while extending standard difference-in-means analysis
(e.g., Angrist & Pischke 2008, Imbens & Rubin 2015) by revealing interpretable structure
within high-dimensional outcomes—structure that remains hidden when relying solely on
administrative categories.
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Table 3: Factor-Level Treatment Effects

Factor Estimate 95% Credible Interval

1 0.08 [—0.04, 0.18]
2 0.04 [~0.07, 0.14]
3 0.08 [—0.14, 0.30]
4 0.41* [ 0.02, 0.87]
5 0.35* [ 0.01, 0.67]
6 0.19 [—0.05, 0.44]
7 0.06 [~0.07, 0.17]
8 0.06 [—0.09, 0.22]
9 0.64* [ 0.16, 1.15]
10 0.03 [—0.12, 0.18]

Note: * indicates 95% Bayesian credible inter-
val excludes 0.

Table 4: Category-Level Treatment Effects

Category Estimate 95% Credible Interval
Skin Care 1.51* [ 0.07, 0.64]
Makeup 0.01 [—0.22, 0.26]
Hair Care 0.00 [—0.00, 0.00]
Bath & Body Care  0.08 [—0.14, 0.30]
Other 0.33* [ 0.07, 0.64]

Note: * indicates 95% Bayesian credible interval excludes 0.
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4.5 Heterogeneous Treatment Effects

We next examine whether the coupon’s impact varies systematically across consumers and
along latent behavioral dimensions. We consider two sources of heterogeneity: observed
pre-treatment characteristics—gender, age, and RFM (recency, frequency, monetary) met-
rics—and unobserved heterogeneity captured by pre-treatment spending across inferred
behavioral factors (e.g., Rossi et al. 1996, Kumar & Shah 2004, Fader et al. 2022). Gender
is coded as a binary indicator (1 = female). The remaining characteristics are dichotomized
at their median values; for recency, customers with more recent activity are coded as 1.
Median-splitting the monetary variable removes its collinearity with pre-treatment factor-
level spending, allowing the latter to enter the unobserved-heterogeneity analyses without
multicollinearity concerns.

Figure 7 reports factor-level ATEs by subgroups defined by observed characteristics. While
most subgroup contrasts exhibit overlapping credible intervals, two patterns emerge. Female
customers show larger treatment effects in Factors 4 and 5, and customers with more recent
activity display stronger responses in Factor 9. These patterns illustrate how latent factors
uncover interpretable behavioral heterogeneity that does not align neatly with administrative
product categories.
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Figure 7: Observed Heterogeneity in Factor-Level Treatment Effects

To investigate unobserved heterogeneity, we regress factor-level treatment effects on pre-
treatment spending in each corresponding latent factor, paralleling broader efforts to
characterize heterogeneous responses using flexible treatment-effect models (e.g., Athey &
Imbens 2016, Wager & Athey 2018). Figure 8 reports the corresponding coefficients. A clear
reinforcement pattern emerges: customers with higher pre-treatment spending in a given
factor tend to exhibit larger treatment effects in the same factor. The diagonal coefficients
are uniformly positive, with credibly positive effects for Factors 1, 5, and 9. An additional
dollar of pre-treatment spending in these factors is associated with approximately a one-cent
increase in the corresponding treatment effect. This pattern suggests that the promotion
coupon primarily amplifies existing behavioral tendencies rather than inducing substitution
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across latent factors.
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Figure 8: Unobserved Heterogeneity in Factor-Level Treatment Effects

For comparison, analogous analyses using the retailer’s administrative product categories
(Supplementary Material S6) reveal weaker and less interpretable patterns: reinforcement
effects diffuse substantially and are often statistically indistinguishable from zero when
outcomes are aggregated to broad categories. This contrast highlights how fixed taxonomies
obscure much of the causal heterogeneity that the latent-factor approach is able to recover.

In summary, these results show that the proposed Bayesian latent-factor framework not
only preserves the aggregate experimental benchmark but also yields a coherent behavioral
decomposition of treatment effects and uncovers systematic heterogeneity—both observed
and latent—that remains largely hidden under conventional category-based analyses. By
isolating where treatment effects originate and for whom they are strongest, the framework
provides a more behaviorally grounded understanding of intervention response.

5 Conclusion

This article develops a Bayesian framework for decomposing treatment effects into latent
components in high-dimensional experimental settings. Motivated by modern experiments
that generate sparse, multi-item outcome vectors, we show how mixed-membership factor
models (e.g., Blei et al. 2003, Airoldi et al. 2006)—estimated exclusively from pre-treatment
data—can be combined with randomized assignment to produce causally interpretable
factor-level effects (e.g., Imbens & Rubin 2015). Restricting latent-structure learning to pre-
treatment outcomes preserves the independence conditions required for causal identification
while allowing items to load flexibly and probabilistically onto multiple latent factors.

Methodologically, the framework integrates three elements: a causal identification result es-
tablishing the validity of factor-level effects under randomized assignment and pre-treatment
factor inference; an analytical decomposition expressing factor-level effects as probability-
weighted averages of item-level effects plus an adjustment capturing alignment between
latent structure and heterogeneous responses; and a joint posterior computation strategy

19



that propagates uncertainty in latent structure through to causal estimands. Together,
these components provide a principled basis for studying how interventions operate across
latent dimensions embedded in high-dimensional outcomes.

Simulation studies show that the method recovers both the latent factor structure and
the induced treatment-effect decomposition under realistic sparsity conditions, including
settings where item-level analyses are unstable and predefined groupings obscure meaningful
heterogeneity. In an application to a large-scale randomized promotion experiment involving
around 2,000 products, the framework uncovers interpretable latent behavioral factors and
reveals that only a small subset of latent factors responds meaningfully to the intervention,
yielding insights that conventional aggregate or category-based analyses fail to reveal.

Beyond decomposition, the framework also yields actionable diagnostics for intervention
design and targeting. By estimating heterogeneous factor-level treatment effects, the model
identifies the latent behavioral dimensions along which an intervention is amplified or
attenuated for each unit. This enables practitioners to detect negative side effects, attribute
them to specific behavioral factors, and trace those effects to the underlying items most
strongly associated with each factor. These diagnostics provide a direct path to intervention
design and targeting—for example, by targeting items linked to underperforming factors.
An illustration of how these insights can be operationalized is provided in Supplementary S7.

Several avenues for future work remain. One direction is to treat the number of latent factors
as unknown, potentially through nonparametric priors or automatic relevance determination,
building on the broader literature on flexible Bayesian factor and topic models (e.g., Wallach
et al. 2009, Mimno et al. 2012, Zhu et al. 2023). Another is to extend the framework to
incorporate temporal evolution of latent structure while maintaining causal interpretability,
enabling applications to longitudinal or sequential experiments. The approach may also
be adapted to quasi-experimental settings with appropriate identification strategies (e.g.,
Goldfarb et al. 2022, Li & Sonnier 2023). Finally, incorporating additional structure, such
as domain knowledge, hierarchical item relationships, or geometric constraints, may further
enhance interpretability in applied settings.

In summary, the proposed latent-factor causal decomposition offers a general and extensible
approach for analyzing high-dimensional experimental outcomes. By combining princi-
pled causal identification with flexible latent-structure learning, it provides a statistically
grounded tool for uncovering the components through which interventions exert their effects.

SUPPLEMENTARY MATERIAL

The supplementary materials (PDF) provide the full conditional distributions used to
estimate treatment effects at each level of analysis, along with the complete estimation
algorithm. They also report convergence diagnostics for the MCMC draws in the empirical
application and investigate the number of unique latent factors associated with items in
the empirical setting. In addition, we describe an alternative analysis that relies on the
firm’s predefined product categories to decompose treatment effects and to characterize
pre-treatment interactions between units and items. Finally, the supplement includes an
illustrative application of the proposed approach that identifies undesirable unit—factor
treatment effects and proposes actionable strategies based on the most relevant items
associated with each unit—factor pair.
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Supplementary Material for
“A Bayesian Latent-Factor Framework for Causal
Decomposition in High-Dimensional Experiments”

S1 Illustrative Example of the Decomposition

This section provides a simple example that illustrates the decomposition in Proposition 3
and shows how factor-level treatment effects can differ from probability-weighted averages
of item-level effects due to covariance adjustments.

S1.1 Setup

Suppose there are I = 2 units, J = 3 items, and K = 2 latent factors. The unit-item
treatment effects 7,; = Y;;(1) — Y;;(0) are:

=1
=2
The corresponding item-level ATEs are:

T = 15, Ty = 25, T3 = 1.5.

Latent factor memberships z;; € {1,2} are:

1=1
=2
Thus, each item is assigned to each factor with probability %:

wir = E[l{z;; = k}] = 1, for all 7, k.

S1.2 Factor-Level Treatment Effects
By definition,

3
Tik — ZH{ZU = /{Z} Tz‘j~
j=1
Computing the factor-level effects for each unit:

Unit 1 : 711:2+4:6, 7'12:0,
Unit 2: ’7'21:3, T22:].+1:2.



Averaging across units gives:

6+3 0+ 2
n=-g- =45 m=-p-=1

S1.3 Decomposition Into Averages and Covariances

The probability-weighted average component is:
3
dwipT;=3(15+25+1.5) =275, k=12
j=1

Next, compute the covariance terms cov(I{z; = k}, 7;):

\j=1 j=2 j=3
E=1| 025 075 0.75
Ek=2|-025 —0.75 —0.75

Summing across items:

3 3
ZCOV(]I{Z,U = 1},7'@']') = 175, ZCOV(H{ZU = 2},72‘]‘) = —1.75.
j=1 j=1

S1.4 Verification of Proposition 3
For k = 1:
71 =275+ 1.75 =4.5.

For k = 2:
Ty =2.75—1.75 = 1.

These match the factor-level ATEs computed directly from potential outcomes, verifying:
3 3
Th= Y WikTi+ Y COV(]I{ZZ']' =k}, Tij>.
j=1 j=1

Finally, the aggregate ATE is:

3 2

T:ZTj :5.5=ZTk,
k=1

=1

demonstrating Corollary 2: covariance adjustments may distort factor-level effects but
always cancel in aggregate.



S2 Full Conditionals for Regression Models

This section provides the full conditional distributions for the regression models used in the
main text. All models take the generic form

t t, t t t t t t
Y arget __ Ttarget‘rxiarge _'_giarge 6'arge NN(07O_2target)7 (SQ]_)

1 Y (2

where “target” indexes the aggregate ATE, factor-level ATEs, and the heterogeneous-effects
specifications

Table S2.1: Aggregate and Factor-Level Regression Models

Model }/itar get X;arget +-target O.Qtarget

Average Treatment Effects

Aggregate Y; (1, Ws) T =(a,7) o’

Factor-Level Yik (1, W) T = (o, Tk) U}%
Heterogeneous Treatment Effects

Aggregate Y; (L&, Wi, & - W;) 7" =(a,7") o

Factor-Level Yig (1, @, Wi, & - W;) 7'1? = (O‘Zv TI?) Ul%h

S2.1 Priors

2 target

~Y

We use conjugate Normal-Inverse-Gamma priors: 7978 ~ N(pug, Xo) and o
Inv-Gamma(ag, by), where ag and by are shape and scale parameters. These priors apply to
all regression specifications in Table S2.1.

S2.2 Full Conditionals
I

Let I denote the number of units in the target regression, g8t = (Y[ ~and xtareet
the I x p design matrix.

(1) Regression coefficients.

Ttargct | ytargct’ Xtargct, 0_2 target ~ N(/JM 2)7 (822>
-1
3= (261 + e XtargetTXtarget) 7 (823>
-1 1 targetT . target
p=33 ko + e X Yy : (52.4)



(2) Error variance.

0_2 target | ytarget’ )Ctarget7 Ttarget ~ InV—Gamma(a, b), (825)
I
a=ay+ 2 (52.6)
1/ T
_ - arget . target _target target _ . target _target
b=by+ 5 (y X T ) (y X T ) .

(52.7)
These full conditionals yield closed-form Gibbs updates in each MCMC iteration.

(3) Pre-treatment Factor Assignments. For each pre-treatment instance n of unit i,
we sample the factor label n;, via the collapsed Gibbs update:

(niv —in + 5)
P(nm = km—\in) v, C? 5) X (n?k —in + C) : N )
7 }']:1 ”gj,ﬂm +JB

(52.8)

where v;,, is the observed item, njj, _,. is the number of unit-factor assignments excluding

—in

instance n of unit ¢, and nijﬁm is the number of item-factor assignments excluding instance
n of unit i. See Griffiths & Steyvers (2004) for details.

S2.3 Hyperparameters

We use weakly informative priors: ¢ = 0.1, 8 = 0.01, po = 0, Xy = 10?1, and ag = by = 1.
These settings impose minimal prior structure while maintaining numerical stability in the
Gibbs sampler. They also encourage units to load on a limited number of factors while
allowing each factor to maintain diffuse support across items.

Algorithm S2.1 summarizes the full inference procedure for estimating latent factors and
treatment effects while propagating factor-model uncertainty.



Algorithm S2.1 Joint Estimation of Latent Factors and Treatment Effects via Collapsed
Gibbs Sampling

1: Initialization
2: Randomly assign each pre-treatment instance n;, to a factor k € {1,..., K}.
3: Compute initial collapsed Gibbs counts:

4.
5:

ng.:  number of pre-treatment instances of unit 4 assigned to factor k
n£ = number of times item j is assigned to factor k across all units

6: for MCMC iterationt =1,...,7 do

7 (A) Collapsed Gibbs Sampling for Instance Assignments
8: for uniti=1,...,1 do
9: for instance n=1,...,N; do > N;: pre-treatment unit-item instances for unit ¢
10: Sample 7;, using the collapsed Gibbs update in Eq. (S2.8)
11: Update counts ng, —~and n%mvm
12: end for
13: end for
14: (B) Posterior Draws for Factor Parameters
15: for unitt=1,...,1 do
16: Sample 6; as in Eq. (9) > Unit—factor prevalences
17: end for
18: for factor k=1,...,K do
19: Sample ¢y, as in Eq. (9) > Factor—item distributions
20: end for
21: (C) Item—Factor Associations and Construction of Outcomes
22: for uniti=1,...,1 do
23: for item 5 =1,...,J do
24: Sample z;; using the posterior in Eq. (3) > Item—factor assignments
25: end for
26: for factor k=1,...,K do
27: Compute factor-level outcomes Yj;, using Eq. (2)
28: Compute pre-treatment features d;; using Eq. (6)
29: end for
30: end for
31: (D) Causal Regression Updates
32: > Aggregate ATE and HTE parameters
33: Sample (o, 7,0) and (o, 7", 0") using Egs. (S2.2)-(52.5) with ¥; as the outcome
34: > Factor-level ATE and HTE parameters
35: for factor k=1,...,K do
36: Sample (ag, Tk, 0%) using Egs. (52.2)—(S2.5) with Y
37: Sample (az, 7',?, 02) using the heterogeneous specification
38: end for
39: end for

S3 MCMC Convergence Diagnostics

We assess convergence of the MCMC algorithm used for latent-factor estimation and for the
Bayesian decomposition of treatment effects. For the main specification with K = 10 latent



factors, Algorithm S2.1 was run for 2,000 iterations. Unless otherwise noted, the first 1,000
iterations are discarded as burn-in, and the remaining 1,000 posterior draws are retained
for inference.

As an overall diagnostic, Figure S3.1 plots the trace of the average log-likelihood of the
latent-factor model across sampling iterations. The chain stabilizes rapidly after the initial
iterations and exhibits no discernible trends, drifts, or cyclical patterns. The trace displays
behavior consistent with satisfactory mixing of the latent allocations and associated Dirichlet

parameters.

Log-likelihood
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o (9} (e W

250 500 750 1000 1250 1500 1750 2000
Iterations

(=]

Figure S3.1: MCMC Draws for Average Log-Likelihood of the Latent-Factor Model

We next examine convergence for parameters central to the empirical analysis. Figure S3.2
reports the MCMC traces for the factor-level ATEs {7} across the full 2,000 iterations.
Each trajectory fluctuates around a stable center with no persistent drifts or signs of
nonstationarity. The marginal variance appears roughly constant throughout the chain, and
visual inspection reveals no stickiness or slow-moving segments indicative of poor mixing.
Successive draws show no evidence evidence of severe autocorrelation that would impede
effective sampling.

Based on these diagnostics, we discard the first half of the chain as burn-in and compute
posterior summaries from the remaining draws, as reported in the main text. No additional
convergence issues were detected for other parameter blocks (e.g., factor—item distributions,
unit—factor prevalences, regression coefficients). All monitored chains exhibit behavior
consistent with convergence to the stationary posterior distribution.

S4 Competing Factor Models

To assess whether pre-defined product categories provide an adequate representation of
unit-item interactions, we compare our mixed-membership LDA specification to several
fixed-membership and restricted benchmarks.

Let categories be indexed by ¢ = 1,...,C, and let item j belong to exactly one category,
with within-category item distribution ¢.(j) = 1/J. if j € ¢ and 0 otherwise, where J,
denotes the number of items assigned to category c. Each unit ¢ has category preferences
0¢ ~ Dirichlet(a®), which govern the probability of selecting each product category. For

6
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Figure S3.2: MCMC Draws for Factor-Level Treatment Effects

Model Number of Factors Perplexity (In) Perplexity (Out)
Mixed-Membership LDA 10 98.53 144.70
Homogeneous LDA 10 282.67 292.68
Firm-Based Categories 5 2,602.90 2,641.12
Random Categories 5 2,998.53 3,086.16

Table S4.1: Perplexity Comparison Across Competing Factor Models

n =1,..., N;, pre-treatment instances are generated as ¢;, ~ Categorical(8¢) and vy, ~
Categorical(¢,,, ). Thus, each observation is generated by first sampling a category and
then sampling an item uniformly within that category. This model enforces fixed item
memberships across all units. Let n;. = ny;l I{ci, = ¢} denote the number of instances
of unit i in category c¢. The posterior distribution of category preferences is 65 | {¢in} ~
Dirichlet(a® 4+ n;, ..., o+ nie).

We also estimate a restricted LDA variant in which factor memberships are homogeneous
across all units. Specifically, we impose 6; = @ for all : = 1, ..., I, while maintaining the
assumption that factors are probability distributions over items. Under this restriction,
the posterior item-factor allocation satisfies P(z;; = k | 0, ¢r) x 8 ¢y, and is identical
across all units. We calibrate this model over a range of factor counts and evaluate fit using
out-of-sample perplexity.

We compare predictive perplexity across mixed-membership LDA, homogeneous LDA, firm-
based categories, and random category assignments of equal size. Results are reported in
Table S4.1.

The firm-based category model substantially improves upon random category assignments,
but remains orders of magnitude less predictive than latent factor models. Even the
homogeneous LDA substantially outperforms firm categories, while the mixed-membership
LDA achieves the best fit overall. These results indicate that pre-treatment consumer
behavior is poorly represented by fixed product categories and is best described by a mixed-
membership structure in which both underlying behavioral factors and item associations
vary across units.



S5 Distribution of Latent Factor Associations Across
Products

To assess the extent to which products exhibit multi-factor membership under the posterior
distribution implied by Algorithm S2.1, we summarize the sampled item—factor assignments.

We first compute the assignment probabilities P(z;; = k | 6;, ¢;) for all units 7 and items j in
the pre-treatment data using the posterior mean estimates of 8; and ¢y. Each unit-item pair
(i,7) is then assigned to its most likely latent factor via 2;; = argmaxy, P(z;; = k| 0;, ¢x).
Finally, for each item j, we compute the number of unique factors to which it is assigned
across all units, given by U; = card({%;; : i = 1,...,I}).

Figure S5.1 reports the empirical distribution of {U;} across all products. Approximately
48% of products load predominantly on a single factor (U; = 1), while the remaining 52%
exhibit substantive posterior support on two or more factors. The substantial mass on
U; > 2 indicates that many products participate in multiple latent behavioral patterns,
underscoring the value of a probabilistic latent-factor representation. Such cross-loading cap-
tures overlapping usage contexts and shared behavioral preferences that fixed administrative
product categories are structurally unable to represent.

0.4 1
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Number of Factors Per Item

Figure S5.1: Distribution of Factor Count per Product

S6 Category-Level Heterogeneous Treatment Effects

For comparison with the latent-factor specification, we replicate the HTE analyses using
the retailer’s five administrative product categories as outcome partitions.

Figure S6.1 reports category-level HTEs by observed customer characteristics (gender, age,
and RFM metrics). Across all categories, subgroup contrasts exhibit wide and overlapping
95% credible intervals. The few apparent differences are small in magnitude and not
robust across categories, indicating substantially weaker discriminatory power relative to
the latent-factor decomposition.

Figure S6.2 reports heterogeneity based on pre-treatment category-level spending. Rein-
forcement patterns are weak and inconsistent: diagonal coefficients are generally small and
frequently include zero, and off-diagonal estimates do not exhibit any coherent substitution
or complementarity structure. In contrast to the latent-factor results, the category-based
specification fails to recover systematic patterns of heterogeneity.
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Figure S6.1: Observed Heterogeneity in Category-Level Treatment Effects
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Overall, the category-based HTE analyses are statistically weaker and substantively less
informative than their latent-factor counterparts. The absence of clear reinforcement or
cross-category relationships supports the conclusion that fixed administrative taxonomies
obscure much of the causal heterogeneity that the latent-factor representation is able to
recover.

S7 Intervention Design Using Factor-Level Hetero-
geneity

This section illustrates how the proposed framework can be used to generate actionable
diagnostics for intervention design and targeting.

Beyond decomposing the aggregate treatment effect, our framework provides unit-factor-
level HTE {7ix}. These capture how the intervention amplifies or attenuates outcomes
along distinct latent behavioral dimensions for each unit, based on both observed covariates
and latent pre-treatment factor exposures. As a result, the model identifies not only where
treatment effects are strongest, but also where they are negative or misaligned with the
intervention’s objective.

Because unit-level treatment effects decompose additively across factors, the aggregate ATE
satisfies

~ =

11 K I K
T= 22T < 72 ) T Im 20}
i=1 k=1 i=1 k=1

where I{-} is the indicator function. This inequality highlights the potential gains from
eliminating negative factor-level responses through targeted refinement.

Figure S7.1 displays the estimated unit-factor treatment effects 7;; in our empirical applica-
tion. Approximately 25% of these effects are negative, indicating that a nontrivial share of
unit-factor interactions respond adversely to the intervention. If these negative contributions
were mitigated, the aggregate treatment effect would increase by approximately 19% relative
to the observed benchmark.
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Figure S7.1: Estimated Factor-level HTE

To illustrate at the unit level, consider a representative consumer with estimated total
treatment effect 7; = 0.93. This unit exhibits negative responses on four latent factors:
Factor 8 (—0.332), Factor 5 (—0.140), Factor 9 (—0.033), and Factor 6 (—0.021). If these
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negative contributions were neutralized, the unit’s predicted response would increase to
1.46, implying a gain of 0.53 in incremental spending.

Crucially, the framework also identifies the specific items most strongly associated with
each adverse unit-factor pair. For unit ¢ and factor k, the items most responsible for the
effect are those with the largest posterior association p;jr o< 0 ¢r;. In this example, the
most influential items are {1520, 318} in Factor 5, {114, 847} in Factor 6, {595, 128} in
Factor 8, and {1352, 1516} in Factor 9. These diagnostics illustrate how the latent-factor
decomposition translates directly into intervention design and targeting strategies by linking
heterogeneous treatment responses to specific behavioral mechanisms and actionable items.
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